Machine Learning for Math: Vision and Intermediate Milestones

Abdou Youssef

George Washington University

National Institute of Standards and Technology

January 10, 2022

Vision

- To provide an "automated mathematician" or "mathematician in a box" to
 - 1.empower mathematicians to do math faster and more reliably
 2.enable users (scientists/engineers/practitioners) to apply math as a service on demand
 - **3.**help learners learn math faster and more easily
- How do we get there (using the latest breakthroughs)?
- What are some intermediate milestones/systems/apps that can build and are extremely useful to scientists and practitioners?

Roadmap -- Approaches --

- Classical AI
 - Based mostly on Logic, Reasoning, and Search
- Classical Computational Linguistics (and Math Linguistics)
 - Grammar (Structure) Based, with some Semantics
- Numeric and Symbolic Processing
 - As currently done in Computer Algebra Systems (CAS)
- Machine Learning / Deep Learning (the latest breakthrough/enabler)
 - The new possibilities

Machine Learning for Math -- What Is Needed --

Datasets

- Large, annotated
- A few large general-purpose datasets, and many smaller special-purpose datasets
- Benchmarks (datasets + performance metrics + baselines)
- Pretrained models (like BERT and GPT)
 - Trained on very large, general-purpose datasets (using large computational resources)
 - Encapsulate general knowledge of math linguistics, math categories, etc.
 - Fine-tunable (with post-training on smaller specialized datasets) for all kinds of specific tasks
- A few key tasks (with associated datasets) that serve as
 - Building blocks for larger applications
 - Vehicles for motivating and tracking progress, for galvanizing the research community
 - Vehicles for testing the powers and limitations of new ideas and techniques

Key Tasks for Math Linguistics -- Many are Counterparts of NLP Tasks --

	Equation-level Tasks (Tokenization and Parsing)	Document-level Tasks	Application-level Tasks
1.	Math Tokenization and String Segmentation	 Extraction of Notations and Definitions (~ 	13.Math Question Answering
2.	Part-of-Math (POM)	Terminology Extraction)	14.Math Summarization
	Tagging and Named	7. Segmentation of Definitions (or Definition	(Extractive and
3.	Math-term	Parsing)	15.Presentation-to-
	Disambiguation	8. Segmentation of	Computation (P2C)
4.	Constituency Parsing of	Theorems (or Theorem	Conversion
	Equations	Parsing)	16.Math Search
5.	Dependency Parsing of	9. Segmentation of Proofs	
	Equations	(or Proof Parsing)	And more:
		10.Math Information	 Math language
		Extraction	generation, given certain
		11.Mathematical & Textual	prompts
		Entailment (MTE), <i>aka</i>	 Math error detection and

Naturallanguage

corroction

What Is Involved in Each Task

- Define the task precisely
- Describe precisely the (x,y) nature of each instance of the (presumed) dataset, to match the defined task
- Define the performance metrics
- Develop an actual dataset
- Preferably create software for loading/reading the dataset
- Optionally provide some baseline models trained on the dataset, along with baseline performance data
- S. Chatzikyriakidis, R. Cooper, S. Dobnik, and S. Larsson, "An overview of natural language inference data collection: The way forward?", In Proceedings of the Computing Natural Language Inference Workshop, 2017

Criteria for Selecting Tasks

Fundamental and relevant

- Feeds to one or more important applications/computational modules
- Basic enough so that we can create for it an annotated dataset suitable for ML model training & testing
- Sufficiently different from other tasks

Equation-Level Tasks (Equation Tokenization and Parsing)

- Tokenization and parsing of math expressions/equations are fundamental tasks in math linguistics
- They are exceptionally challenging for a number of reasons
 - Lack of universal grammar for math expressions/equations
 - Fluidity of vocabulary (abstract terms have different meanings/roles in different contexts)
 - Fluidity (ambiguity) of math structures: Is "" or ?
 - Tokenization ambiguity:
 - Is "in" or ?
 - Is "Ai" the Airy function Ai or ?
 - Is "" or ?

Task: Tokenization and String Segmentation

- Definition: breaking an input sequence of characters into tokens, even when tokens are not marked by spaces, punctuations, or special characters
- Meets the task-criteria? Obviously yes

Dataset

- Each instance is of the form: and where
 - the 's are characters that authors use in math equations, and
 - each is either "S" or "I" or "B": "S" indicates that is the starting character of the next token, "I" indicates that is an internal character of a token, "B" indicates is a blank
- Example: (asin x, SSIIBS)
- Suitable for seq2seq models
- Metrics: Accuracy

Task: POM Tagging and Named Entity Recognition

 Definition: tagging each token in an input sequence of math tokens (derived from tokenizing an equation), where each token will be tagged with a single tag or with multiple tags

Dataset

- Each instance is of the form: and where
 - the 's are tokens of an equation/expression, and
 - each is tag for , from a pre-defined tagset; alternatively, each is a subset of tags for a fuller description of 's meaning/role/nature
- Example for :
- Suitable for seq2seq models, and also for shallow-grammar-based parser-tagger (Youssef)

Metrics: Accuracy, precision, recall

Task: Math-Term Disambiguation (MTD)

- i.e., Symbol-Sense Disambiguation (SSD), ~ WSD in NLP
- **Definition**: Given a sequence of tokens, where each token has a set of competing tags, determine which tag is the correct one for each token

Dataset

- Each instance is of the form: , and
 - the 's are tokens of an equation/expression,
 - each is a bunch of "|"-separated alternative/competing tags for
 - each is the correct tag of ,
- Example (for):
- Suitable for seq2seq models, where the output sequence is a sequence of disambiguated tags

Metrics: Accuracy

Math Disambiguation -- with PhD Student Ruocheng Shan --

Prime Class Equation **Superscript** $h_s(z) = h(z)g_{s-1}(z) + h'_{s-1}(z)$ derivative Class **Example Equation** $a' = -a + \sum_{j=1}^{n} b_j$ part of name power part-of-name higher-order Gamma derivative Class Equation summation $\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt$ upper bound gamma function integral upper $\Gamma(a,z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt$ bound incomplete gamma function $\Gamma_q(z+1) = \frac{1-q^z}{1-q}\Gamma_q(z)$ q gamma function $\Gamma_m(a) = \int_{\Omega} etr(-X) |X|^{a - \frac{1}{2}(m+1)} dX$ multivariate_gamma_function

Comparative Evaluation Results

Prime () Disambiguation: derivative vs. part-of-name

Model	Accuracy	Precision	Recall	F1 Score
Decision Tree	84%	92%	78%	83%
Random Forest	78%	80%	78%	79%
SVM	78%	87%	70%	78%
LSTM	56%	57%	51%	54%

- **DT** is clearly a winner for Prime
- Demonstrate DT's ability to learn better the patterns when the dataset is **small**
- LSTM shows poor performance

Comparative Evaluation Results

Superscript Disambiguation: power vs. part-of-name vs. derivative vs. sum/int limit

Model	Accuracy	Precision	Recall	F1 Score
Decision Tree	72%	75%	66%	70%
Random Forest	83%	86%	83%	85%
SVM	83%	92%	86%	87%
LSTM	65%	68%	59%	63%

LSTM

- Still bad
- But better than in prime and gamma
- Because the larger dataset, the better the LSTM

- **SVM** delivers the best performance
- **DT** gave the **least** performance among all three ML models
- That is because the superscript dataset is the largest
 - The larger the dataset, the better the SVM
 - The larger the dataset, the worse the DT

Comparative Evaluation Results

Gamma Disambiguation

Model	Accuracy	Precision	Recall	F1 Score
Decision Tree	82%	92%	76%	83%
Random Forest	83%	83%	79%	81%
SVM	82%	91%	76%	82%
LSTM	45%	55%	40%	46%

- All 3 conventional ML models gave good performance
- LSTM is very poor, as expected, due to small training dataset size

Quick Observations about ML in Math Disambiguation

- ML is quite applicable to Math Disambiguation
- Because of the lack of large labeled datasets in math, we can't exploit the full potential yet
- Rather, classical ML models (SVM, RF and DT) are better suited when datasets are small
 - Decent performance (83%-84% in accuracy)
- But to get to much higher performance, DL will be needed, and thus large labeled datasets for math need to be developed
 - We're working on that (including development of labeled datasets)

A Challenge/Opportunity in Disambiguation (1/2)

- The actual competing candidates for token tags may need to be generated (at least in part) from surrounding text, not just from the equation itself, and not just from fixed a priori lists
- Also, the disambiguation process, i.e., selecting the best competing tag, may need the surrounding text, for better performance
- Similarly, the tagging process (i.e., selecting for each token the right tag from a complete tagset) may benefit from the surrounding text
- Challenge/Opportunity: How do we develop & structure datasets for disambiguation and tagging, to improve performance of those tasks?

A Challenge/Opportunity in Disambiguation (2/2)

- Challenge/Opportunity: How do we develop and structure datasets for disambiguation and tagging, to improve performance of those tasks?
- One possibility for the dataset: Have each sample as
 - ([text₁, , text₂] ,) where
 - text₁ and text₂ are chunks for text that occur before and after the target equation in the native document
 - is the sequence of tokens of the equation
 - each is tag for , from a pre-defined tagset, for the tagging task; or a set of competing candidate tags for , for the disambiguation task

Key Tasks for Math Linguistics -- **Counterparts of NLP Tasks** --

Equation-level Tasks (Tokenization and Parsing)	Document-level Tasks	Application-level Tasks
1. Math Tokenization and String Segmentation	 Extraction of Notations and Definitions (~ Terminology Extraction) 	13.Math Question Answering 14.Math Summarization (Extractive and
2. Part-of-Math (POM) Tagging and Named Entity Recognition (NER)	 Segmentation of Definitions (or Definition Parsing) Segmentation of Theorems (or Theorem Parsing) 	Abstractive) 15.Presentation-to- Computation (P2C) Conversion 16.Math Search
3. Math-term Disambiguation	 Segmentation of Proofs (or Proof Parsing) Math Information 	And more: Math language
4. Constituency Parsing of Equations	Extraction 11.Mathematical & Textual	generation, given certain prompts
5. Dependency Parsing of Equations	Entailment (MTE), <i>aka</i> Natural Language Inference in Math	 Math error detection and correction Reasoning tasks

Presentation to Computation (P2C) Conversion

- P2C: Automated coding of math expressions
 - Converting an input math expression (in Latex/etc.) into Maple/Mathematica/C/... code or into formal representation (e.g., cMathML)
- P2C is a machine translation (MT) problem
 - Much like the classical NLP language translation problem
- Any hope?
 - DL is revolutionizing machine translation
 - Though in a nascent stage, automated coding is already here

DL Performance in Machine Translation

Language Translation

Now (2021), Google Translate's BLEU score = 37.56 (Combination of DL and other techniques/tricks)

Presentation to Computation (P2C) -- Syntactic Approach --

- We developed a P2C conversion system (Andre Greiner-Petter et al., TACAS 2022)
- Applied it on NIST's DLMF
 - to convert many of the DLMF equations to Maple/Mathematica
 - and to verify the correctness of those equations
- Some of the issues, results and observations are highlighted next

P2C: A Few Issues (1/3)

Consider this equation about the Jacobi polynomial

Some Issues

- Identification of the scope of the summand
- Does the target language/platform have adequate built-in functions?
 - Gamma(z) is not in Maple!
 - EulerGamma[z] is not in Mathematica!
- Reliable POM tagging

P2C: A Few Issues (2/3) -- Summand Scope --

- We did this by extrapolating/assuming certain syntactic rules and implementing them
- Reasonable performance (see later)
- It will be more preferable if a ML/DL system can learn the rules from datasets and does the conversion correctly

Example	Index Variable(s)	Index Set
		The even integers?
		Divisors of
		and is relatively prime with

P2C: Some Performance Results and observations

- We applied our P2C system to a large subset of the DLMF equations
 - 62.9% success of translation to Maple
 - 72.0% success of translation to Mathematica
 - Close to 100% precision
- More translation success can be achieved
 - by incorporating more syntactic rule patterns (e.g., handling ellipsis),
 - and if the target system has a richer library/built-in functions
- Still, a ML/DL approach would
 - save a lot of human engineering and coding efforts, and
 - will most likely result in larger translation coverage.

Math Language Generation

- GPT-2 and GPT-3 (by OpenAI)
- Its relevance to math language generation
 - Can we train a GPT on math corpora so it can generate relevant and correct textual responses/continuations to prompts.
- A Few Desirable Math Examples:
 - **Prompt**: "three plus seven is" or "3+7="
 - Generated text: "ten" or "10", rather than a long, winding, preachy/editorial statement (or analogies) related to 3+7
 - Prompt: a bare bone (skeleton) proof
 - **Generated text**: an inviting, fleshed-out proof that includes not only the skeleton but also proper transitions and bridging explanations/fill-ins
 - Prompt: an equation/expression in Latex or informal text
 - **Generated text**: a code (Mathematica, Maple, C, cMathML) for computation or formal representation

 Need a large math dataset useful for finetuning GPT for math language generation

- GPT generates text in response to a user's prompt. Here is an example:
- **Author Prompt:** Write me an article about creativity please
- GPT-3 Response: I'll be honest. I don't know much about creativity. I'm not a psychologist and I'm not creative myself. I'm just a guy who likes to read about psychology and creativity. What I can do, though, is write you an article about creativity that's based on what I have read. That way you get a proper article, but you don't have to pay for the expertise of a psychologist or a creative person.

Math Language Generation with GPT

- <u>https://davidbieber.com/snippets/2020-07-22-writing-with-gpt</u>
 <u>3</u>
 <u>4</u>
- Grading GPT-3 For STEM Lesson Plan Content Generation
- <u>Customizing GPT-3 for Your Application</u> (from OpenAI)

Major Intermediate Systems/Apps Highly Useful

- Fulfilling the vision of a "Mathematician in a box" will take a while
- What can/should we do in the nearer term?
- I see four major intermediate things worthwhile, needed, doable
 - STEM-Text summarization
 - STEM (Math) QA
 - Powerful, reliable P2C
 - GPT-based prompt-response style applications (preferably combined with a computation/reasoning engine)

Major Intermediate Systems/Apps Highly Useful -- STEM-Text Summarization --

- Scientists/engineers/practitioners are overwhelmed by an ever increasing flood of new publications/findings
 - they need an automated system that regularly summarizes the relevant & latest, and present the summaries to them
- Current summarizers need to be adapted to STEM/Math summarization
 - For instance, a good summary may need to include key equations

Major Intermediate Systems/Apps Highly Useful -- STEM (Math) QA --

General Question Answering

MAP: Mean Average Precision	PRE-DL PERFORMANCE	DL-BASED PERFORMANCE
avg		Laskar et al. (2020), using RoBERTa:
B	MAP: 0.71	MAP: 0.95
	MRR: 0.78	MRR: 0.98

• Wolfram Alpha does a good job in Math QA

- Can we do better/more with deep learning?
- The above leap from pre-DL to DL performance in QA is very promising for math QA
- But again, we need datasets ...
- STEM (Math) QA systems will be another major enabler and will boost the productivity and efficiency of scientists/practitioners

Major Intermediate Systems/Apps Highly Useful -- P2C --

- Covered earlier
- But barely scratched the surface
- DL (with all the tasks mentioned earlier, e.g., math tokezination, tagging, parsing, etc.) can yield much higher P2C performance
- Like Math summarizers and QA systems, P2C systems would be a major enabler and productivity booster

Major Intermediate Systems/Apps Highly Useful -- GPT-based prompt-response style applications --

- Saw briefly some potential applications
- Stronger performance can be expected if GPT-based systems are combined with a computation/reasoning engine
 - The GPT system can learn to recognize when it needs to call a computation engine (like Maple) to carry out some numerical/symbolic computation, and incorporate the latter results into the final generated text
 - Similarly, the GPT system can learn to recognize when it needs to call a reasoning system and incorporate the results into the final generated text

GPT, finetuned to math/STEM, can be a game changer

Closing Thoughts

- Deep Learning has a huge potential to revolutionize Math linguistics and enable previously unimaginable Math systems
- One key to the success of DL in Math Linguistics is the availability of datasets
- So, though not exciting, it is essential that we, as a community, develop labeled math datasets (while we do the exciting stuff)
- Dataset development need not be all manual
 - Semi-automated methods are possible
 - Use syntactical approaches to generate labeled datasets (e.g., math tokenizers/taggers, P2C systems), and manually check/correct borderline results, and finally use those datasets to train DL systems